Section A

Consider two goods, X and Y The price of product X increases from $R 6$ to $R 8$ per unit As a result, the quantity demanded of product Y decreases from 200 to 190 units
1.4.1 \quad Arc elasticity general formula $=\frac{\Delta \text { quantity }}{\Delta \text { determinant }} \times \frac{\text { Average determinant }}{\text { Average quantity }}$

Arc cross - price elasticity $=\frac{190-200}{8-6} \times \frac{[8+6] \div 2}{[190+200] \div 2}=-0.18(3 \mathrm{~d} . \mathrm{p})$

1.4.2 Complement goods

2.1

21 The Department of Agriculture is interested in analysing the domestic market for maize The staff economists of the Department of Agriculture estimate the following equations for the demand and supply curves
$Q_{d}=1600-125 P$
$Q_{\text {, }}=400+165 P$
2.1.1 $1600-125 P=400+165 P$
$1600-400=165 P+125 P$
$1200=290 P$
$\frac{1200}{290}=P$
$P=R 4.14$
2.1.2 Substitute price into any of the two equations:
$Q_{d}=1600-125(4.14)=1083$ units
$Q_{s}=400+165(4.14)=1083$ units
2.2 Consider the market for wheat Using the standard rule of demand and supply, explain how the equilbrium price and quantity would change in each of the following situations, ceteris paribus
2.2.1 Demand curve for bread will shift to the left and downwards, equilibrium price and quantity will decrease simultaneoiusly.
2.2.2 Supply curve for wheat will shift to right and downwards, equilibrium price will decrease and equilibrium quantity will increase.
2.2.3 Demand curve for wheat will shift to the right and upwards, equilibrium price will increase and equilibrium quantity will increase.
2.2.4 Demand curve for wheat will shift to the right and upwards, equilibrium price will increase and equilibrium quantity will increase.
2.2.5 Supply curve for wheat will shift to the left and upwards and demand curve will shift to the right. Equilibrium price will increase and equilibrium quantity will be uncertain or indeterminant.

$3.1 \quad$ Utility

Is a numerical score representing the satisfaction that a consumer gets from a given market basket.
3.2 Marginal utility (MU)

Additional satisfaction obtained from consuming one additional unit of a good.
3.3 Satisfaction is maximized (given the budget constraint) at the point where:
$M R S=\frac{P_{X}}{P_{Y}}$ or Indiffrence curve is tanget to the budget line
3.4

Bundle	MU of peanut buttrer	MU of Tuna	MRS
A	0.25	2.41	0.1037
B	0.31	1.50	0.2067
C	0.42	0.84	0.5
D	0.66	0.33	2

Odwa is maximising satisfaction at: $\frac{M U_{x}}{M U_{y}}=\frac{P_{x}}{P_{y}}$, That is $\frac{0.42}{0.84}=\frac{1}{2}=0.5$.
That is on bundle C, MRS $=\frac{M U_{x}}{M U_{y}}=\frac{P_{x}}{P_{y}}=\frac{1}{2}=0.5$
4.1.1 Profit maximisation condition:

$$
\begin{aligned}
& M R=M C \\
& 200-2 Q=20 \\
& 2 Q=200-20 \\
& Q=90
\end{aligned}
$$

4.1.2 Profit maximisation condition:
$90=250-4 P$
$4 P=250-90$
$P=R 40$
4.1.3 Total profit $=$ Total revenue minus Total cost

1 st find total revenue curve by integrating marginal revenue
$T R=P \times Q=R 40 \times 90=R 3600$
$T C=10 \times 90=R 900$
Total profit $=R 3600-R 900=R 2700$

5.1

Nash Equilibrium
Nash equilibrium is a set of strategies (or actions) such that each player is doing the best it can given the actions of its opponents. Because each player has no incentive to deviate from its Nash strategy, the strategies are stable.

Dominant strategy

Is a strategy that is optimal no matter what an opponent does.

Dominant Strategies:	I'm doing the best I can no matter what you do. You're doing the best you can no matter what I do
Nash Equilibrium:	I'm doing the best I can given what you are doing. You're doing the best you can given what I am doing.

5.2.1 The nash equilibrium occurs at the bottom right C,C position.

Firm Y has a diminant strategy to always target the civilian research market.

Firm X does not have a dominant startegy.
However, Firm X's best response fo Firm Y's dominant strategy is to also the civilian market.

In this postion, each firm does its best given what the other firm does.
It is a Nash equilibrium in which each firm correctly assumes how much its competitor will produce and sets its own production level accordingly.

Stackelberg model

It is an oligopoly model in which one firm sets its output before other firms do, First Mover Advantage

Section B

1. 3
2. 4
3. 4
4. 3
5. 3
6. 4
7. 2
8. 4
9. 1
10. 2
11. 2
12. 4
13. 1
14. 4
15. 2

Repeated oct/nov 2017 question 9 section B
$Q_{a}=Q_{b}$,therefore $R 160=R 1(32$ units $)+R 4(32$ units $)$
16. 4 Repeated oct/nov 2017 question 13 section B
$F C=R 20 \times 6=R 120$, formula refer to question 1.2 section A

$$
A F C=120 \div 4=30
$$

17.	2	Repeated as well
18.	2	Repeated as well
19.	4	
20.	3	Assignment 02 sem 022018
21.	3	
22.	4	
23.	1	
24.	1	
25.	2	
26.	2	
27.	1	
28.	3	
29.	2	
30.	1	

Oct/Nov 2018 Suggested Solutions

1.1 QUESTION 1 (25 marks)

11 The average monthly income of households in a certan town increases from R2 000 to R2 500 As a result, the quantity demanded of white bread increases from 1000 to 1100 units per day, the quantity demanded of brown bread decreases from 2000 to 1900 units per day and the quantity demanded of KFC (friend chicken) increases from 300 to 500 pleces per day
$Y_{0}=R 2000 \& Y_{1}=2500$
$D_{W B 0}=1000 \& D_{W B 1}=1100$
$D_{B B 0}=2000 \& D_{B B 1}=1900$
$D_{K F C 0}=300 \& D_{K F C 1}=500$
Arc elasticity general formula $=\frac{\Delta \text { quantity }}{\Delta \text { determinant }} \times \frac{\text { Average determinant }}{\text { Average quantity }}$
1.1 .1 a) Arc elasticity of $D_{W B}=\frac{1100-1000}{2500-2000} \times \frac{[2500+2000] \div 2}{[1100+1000] \div 2}=0.429(3 \mathrm{~d} . \mathrm{p})$
b) Arc elasticity of $D_{B B}=\frac{1900-2000}{2500-2000} \times \frac{[2500+2000] \div 2}{[1900+2000] \div 2}=-0.231(3 \mathrm{~d} . \mathrm{p})$
c) Arc elasticity of $D_{K F C}=\frac{500-300}{2500-2000} \times \frac{[2500+2000] \div 2}{[500+300] \div 2}=2.25(3 \mathrm{~d} . \mathrm{p})$
1.1.2

Normal Goods $(Y E D>0)$	Inferior Goods $(Y E D<0)$
White Bread	Brown Bread
KFC	

Refer to table on page 4 of Study Guide
1.1.3 a) White Bread is a necessity because its YED lies between 0 and 1
b) Brown Bread is neither necessity or luxury good since YED <0
c) KFC is a Luxury good because its $Y E D>1$

20 labourers @ R60 per labourer
$A P$ for 20 labourers $=3$ units per day
$M P$ for $20^{\text {th }}$ labourer $=1$ unit per day
$F C=R 360$
Formulas:

- Average Total Cost (ATC) = Total Cost / Q (Output is quantity produced or ' Q ')
- Average Variable Cost (AVC) $=$ Total Variable Cost / Q
- Average Fixed Cost (AFC) = ATC - AVC
- Total Cost (TC) = (AVC + AFC) X Output (Which is Q)
- Total Variable Cost (TVC) = AVC X Output
- Total Fixed Cost (TFC) = TC - TVC
- Marginal Cost (MC) = Change in Total Costs / Change in Output
- Marginal Product (MP) = Change in Total Product / Change in Variable Factor
- Marginal Revenue (MR) = Change in Total Revenue / Change in Q
- Average Product (AP) = TP / Variable Factor
- Total Revenue (TR) = Price X Quantity
- Average Revenue (AR) = TR / Output
- Total Product (TP) = AP X Variable Factor
- Economic Profit $=$ TR - TC >0
- A Loss = TR - TC <0
- Break Even Point $=A R=A T C$
- Profit Maximizing Condition $=M R=M C$
- Explicit Costs = Payments to non-owners of the firm for the resources they supply.
1.2.1 Total Product $=A P \times$ variable factor

Total Product or Output or $Q=3 \times 20=60$ units
1.2.2

$$
\text { Total Cost }=T F C+T V C=T F C+A V C(Q)=360+60(60)=R 3960
$$

1.2.3 ATC $=\frac{3960}{60}=R 66$
1.2.4 $M C$ of the $60^{\text {th }}$ unit of output $=R 60 \times \frac{1}{1}=R 60$,
were $w=R 60, \Delta L=20-19=1 \& \Delta q=M P$ for $20^{\text {th }}$ labourer $=$ 1 unit per day

Borrowing from the slides:
$\mathrm{MC}=\Delta \mathrm{VC} / \Delta q=w \Delta L / \Delta q$
And
$\mathrm{MC}=w / \mathrm{MP}_{L}$
1.2.5 $A V C=\frac{A T C}{Q}=\frac{3600}{60}=R 60$
2.1.1 Monopoly: Market with only one seller and many buyers
2.1.2 Oligopoly: a market in which only a few firms compete with one another, and entry by new firms is impeded.
2.1.3 Collusion: is collective action by buyers or sellers so as to influence the market (acquire monopoly power).
2.1.4 Interdependence between firms: occurs when actions of one firm affects another firm.
2.1.5 Monopolistic competition: Market in which firms can enter freely, each producing its own brand or version of a differentiated product.
2.2

Q	Total Revenue (TR)	Total Cost (TC)	Total Profit	Average Revenue (AR)	Average Total Cost (ATC)	Marginal Revenue (MR)	Marginal Cost (MC)
0	0	50	-50	-	-		
						300	250
1	300	300	0	300	300		
						275	225
2	575	525	50	287.5	262.5		
						250	200
3	825	725	100	275	241.67		
4	1050	900	150	262.5	225		175
						200	250
5	1250	1050	200	250	210	175	175
6	1425	1225	200	237.5	204.17		
7	1575	1425	150	225	203.57		200
						125	225
8	1700	1650	50	212.5	206.25		
9	1800	1900	-100	200	211.11		250
						75	275
10	1875	2175	-300	187.5	217.5		

$T C=T R-T R$
3.1 The following table shows the marginal and total utlity that Thomas derives fro consumption of pizza slices during an all-you-can-eat lunch at the university's cai Use the information provided to answer the questions that follows

Number of pizza slices Eaten	Total utility	Marginal utility
0	0	
1	40	40
		32
2	72	27

3	99	24
4	123	
		18
5	141	8
6	149	0
7	149	0
8	142	7

3.1.1 Thomas' addititonal utility from the consumtion of a fourth pizza slice is 24
3.1.2 Thomas' addititonal utility from the consumtion of a fourth pizza slice is 8
3.1.3 Total utility increases at a decreasing rate from first pizza slice to the sixth slice, from sixth to seventh slice there is no increase and from seventh to eighth slice total utility starts decline.
3.1.4 Marginal utility follows the law of diminishing marginal utility as Thomas eats more and more pizza

Explanation:

Diminishing marginal utility:

Principle that as more of a good is consumed, the consumption of additional amounts will yield smaller additions to utility.

The no question 4
$5.1 \quad$ Cournot model
Oligopoly model in which firms produce a homogeneous good, each firm treats the output of its competitors as fixed, and all firms decide simultaneously how much to produce.

Stackelberg model

Oligopoly model in which one firm sets its output before other firms do.

Firm A and B would choose to cut prices

- It is the dominant strategy
- If firm B cuts and Firm A Cuts Firm A would get 6
- If firm B colludes and frim A cuts Firm A would get 24
- It makes sense for firm A to cut
- Same logic applies to firm B

Section B

Qn. Ans. Explanation

1. 3 A change in the price of the product will result in a movement along the same market demand curve.
2. 3 (Perfect complements are two goods for which the MRS is zero or infinite; the indifference curves are shaped as right angles)
3. 2 Given $Q_{s}=-300+15 P, P_{0}=R 30$ and $P_{1}=R 60$
$1^{\text {st }}$:Calculate quantities for each price by substituting given prices
into Q_{s} equation.
$Q_{0}=-300+15(30)=150$ units and $Q_{1}=-300+15(60)=600$ units

Arc elasticity general formula $=\frac{\text { Qquantity }}{\text { determinant }} \times \frac{\text { Average determinant }}{\text { Average quantity }}$

Arc elasticity general formula $=\frac{600-150}{60-30} \times \frac{[60+30] \div 2}{[600+150] \div 2}=1.8$
where: $600-150=450,60-30=30,[60+30] \div 2=45 \&[600+150] \div$ $2=375$

Therefore: $\frac{450}{30} \times \frac{45}{375}=$ 1.8 Thank you
4. 1 Slope of indference curve is:
$\frac{\text { change in } Y}{\text { change in } X}=-\frac{1}{2}$ and it is a straight since they are perfect substitutes.
perfect substitutes Two goods for which the marginal rate of substitution of one for the other is a constant.
5. 1
6. 3

Refer to figure 4.6 in textbook or slides

Units	Total utility From cookies	Marginal Utility from cookies	Weighted Marginal utility	Total Utility From Rusks	Marginal Utility From Rusks	Weighted Marginal Utility
0	0	10	$\frac{10}{R 1}=10$		14	$\frac{14}{R 1}=14$
1	10	8	$\frac{8}{R 1}=8$		10	$\frac{10}{R 1}=10$
		18	6	$\frac{6}{R 1}=6$		8
2		4	$\frac{4}{R 1}=4$		6	$\frac{8}{R 1}=8$
3	24			38		$\frac{6}{R 1}=6$
4	28					

Consumer maximises satisfatcion when $\frac{M U_{x}}{M U_{y}}=\frac{P_{x}}{P_{y}}$ or $\frac{M U_{X}}{P_{x}}=\frac{M U_{Y}}{P_{Y}}$
Given R5 as income, use the following equation: $P_{x} \cdot Q_{x}+P_{y} \cdot Q_{y}=$ income

```
\(R 1(1\) unit) \(+R 1(2\) units \() \neq R 5\)
\(R 1(2 u n i t)+R 1(3\) units \()=5\)
\(R 1(3\) unit \()+R 1(4\) units \() \neq 5\)
```

Utility is maximised when the marginal utility per rand is equal between good A and B.
For $\operatorname{good} A, \frac{M U_{A}}{P_{A}}=\frac{100}{5}=20$
For $\operatorname{good} B, \frac{M U_{B}}{P_{B}}=\frac{160}{10}=16$
Since $M U_{A} / P_{A}$ is greater than $M U_{B} / P_{B}$, utility can be increased by consuming more of good A and less of good B.
8. 2 Isoquant Refer to figure 6.3 in unit 6

Curve showing all possible combinations of inputs that yield the same output.
Marginal rate of technical substitution (MRTS) Amount by which the quantity of one input can be reduced when one extra unit of another input is used, so that output remains constant.
9. 2
$Q_{a}=Q_{b}$, therefore $R 160=R 1(32$ units $)+R 4(32$ units $)$
10. 3

Refer question 4 section B
11. 3

OCDQ
12. 3

Profit maximization condition:
$M R=M C$
13. $4 \quad F C=R 20 \times \mathbf{6}=R 120$, formula refer to question 1.2 section A
$A F C=120 \div 4=30$
14. 3
15. 2

Refer to 8.6
16. 4
17. 2

350-250=100
18. 1
$\frac{27000}{15000}=1.8$
19. 2
20. 1
21. 3

One of the characteristics of perfect market
22. 2

Raw materials and labour are variable costs $=R 2000(10 \times R 700)=R 9000$
Capital and land i.e rent are fixed cost =R2 250
23. 1
24. 3
25. $3 \quad \frac{M P_{L}}{M P_{K}}=\frac{w}{r}$
$\frac{15}{45}=\frac{300}{900}$
26. 1 When a market is in equilibrium, firms are doing the best they can and have no reason to change their price or output.

Nash Equilibrium

Equilibrium in oligopoly markets means that each firm will want to do the best it can, given what its competitors are doing, and these competitors will do the best they can, given what that firm is doing.

Nash equilibrium Set of strategies or actions in which each firm does the best it can given its competitors' actions.
27. $1 \quad$ R2 805000 - R2 800000
28. 4

Cournot model
Oligopoly model in which firms produce a homogeneous good, each firm treats the output of its competitors as fixed, and all firms decide simultaneously how much to produce.
29. 3

Stackelberg model

Oligopoly model in which one firm sets its output before other firms do.
Suppose Firm 1 sets its output first and then Firm 2, after observing Firm 1's output, makes its output decision. In setting output, Firm 1 must therefore consider how Firm 2 will react.
30. 1

