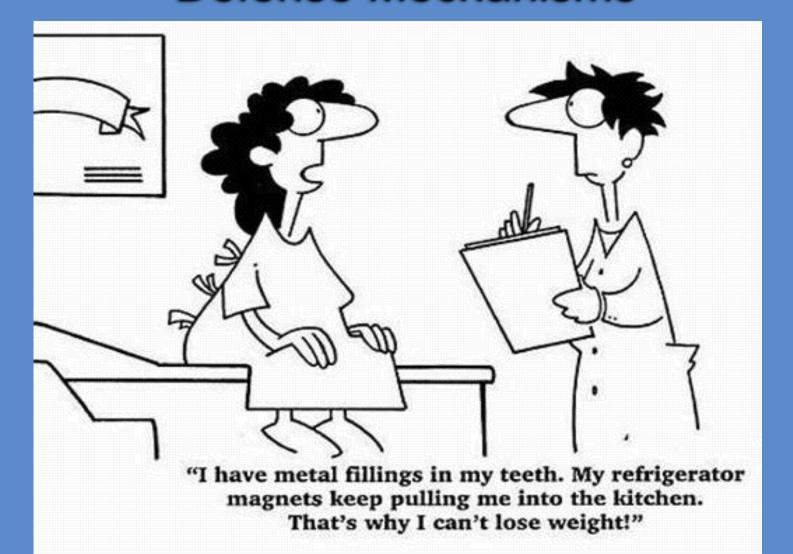


Personality

- Concept of personality
 - Most clearly embodies the notion of behavioral consistency
- Personality factors clusters of behavior tendencies that occur together

Psychoanalytic Perspective - Sigmund Freud

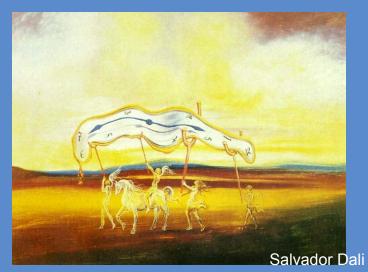
- Conscious/ unconscious
 - Ego
 - Superego
 - Personal Unconscious
- Unconscious
 - -Id



Sigmund Freud - Defense Mechanisms

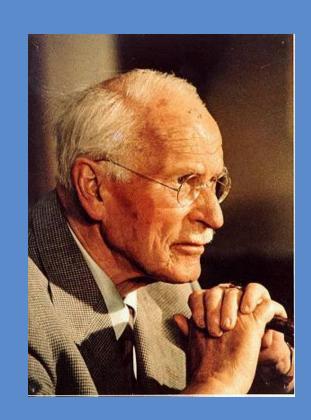
- Denial
- Repression
- Regression
- Projection
- Reaction formation
- Displacement
- Intellectualization
- Rationalization

Sigmund Freud - Defense Mechanisms


Sigmund Freud Dreams

"Royal road to the unconscious"

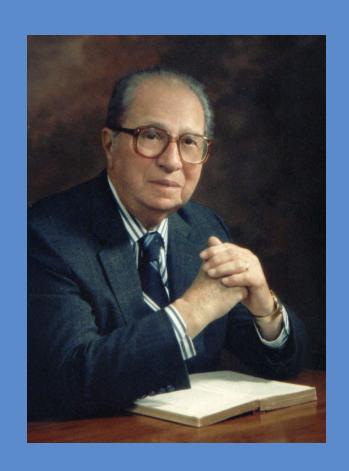
Manifest dream


Latent dream

Use in therapy – free association; slips of tongue

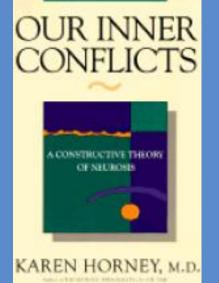
Carl Jung - Parts of Personality

- Conscious
- Personal Unconscious
- Collective Unconscious
 - Inherited universal ideas
 - Archetypes innate universal psychic dispositions- part of nervous system



Alfred Adler-Social Equality

- Inferiority Complex
- Teleology = future orientation
- Family Council
- Education



Karen Horney-Inner Conflicts

- Three personality types-
 - Moving toward people
 - Moving against people
 - Moving away from people

Karen Horney – Sadism

- End of a severe neurosis
- Early childhood abuse
- Hopelessness
- Numb to feelings
- Style of relationships

Existentialism - Viktor Frankl

- Existentialism
- Theory
 - Will to meaning
 - Suffering has meaning
 - Conscience = unconscious spirituality
 - Existential vacuum
 - Boredom
 - "Sunday neurosis"
- Therapy = logotherapy

Chapter 11 Review

- Definitions personality, etc.
- Basic structure, parts, functions of each theory
- Psychoanalytic Perspective
 - Freud unconscious, defense mechanisms, anxiety
 - Jung collective unconscious; archtypes
 - Adler perfectionism: inferiority complex
 - Horney anxiety; three types of people; sadism
 - Frankl existentialism theory; logotherapy

Humanist Perspective

- Importance of free will and personal choice
- People are basically good
- Unconditional positive regard
- Self-actualization

Humanist Theories - Eric Fromm

- Loneliness
- Society to blame
- Needs-
 - Relatedness loss with nature
 - Transcendence over animal nature to become creative
 - Rootedness belonging
 - Sense of personal identity
 - Frame of reference stability

Eric Fromm-Character Orientations

- Receptive -dependency
- Exploitative takers
- Hoarding misers
- Marketing- selves
- Productive value others
- Necrophilus
- Biophilous
- Concept of love society

Humanist Theories – Carl Rogers

- Structure of Personality
 - Organism
 - -Self
 - Organism and Self

Carl Rogers – Structure of Personality

Organism -

 Phenomenal field - person's perception of his subjective reality – has one motive: selfactualization; innate

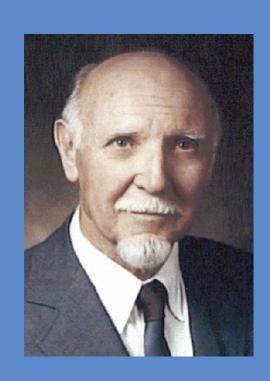
Self -

- Pattern of conscious perceptions and values
- Develops out of O; interacts with E
- Strives for consistency
- Perception, not what is, is important

Ideal self – ever changing

Carl Rogers Structure of Personality

Organism and Self-


- Congruence / Incongruence
 - Between subjective reality and external reality
 - Between self and ideal self

Carl Rogers Development of Personality

- Self-actualization
- Anxiety
 - Outcome of discrepancy between one's distorted self-concept and actual experience - felt as threat
- Defense mechanisms
 - Denial
 - Distortion
- Self-serving bias

Trait Theory-Raymond Cattell

- Focus on description of behavior
- Five traits at core of personality
- Research confirms genetic components in certain personality traits.
- More concerned with describing behavior than explaining it.

Assessing Personality

- Psychological Tests
 - Standardized
 - Norms
 - Reliability / validity
- Self-Report Measures
 - MMPI
 - Campbell-Strong
- Projective tests
 - Rorschach
 - TAT
- Behavioral assessment
- Battery of tests

Scorer's Initials.

Mole

The Minnesota Multiphasic Personality Inventory

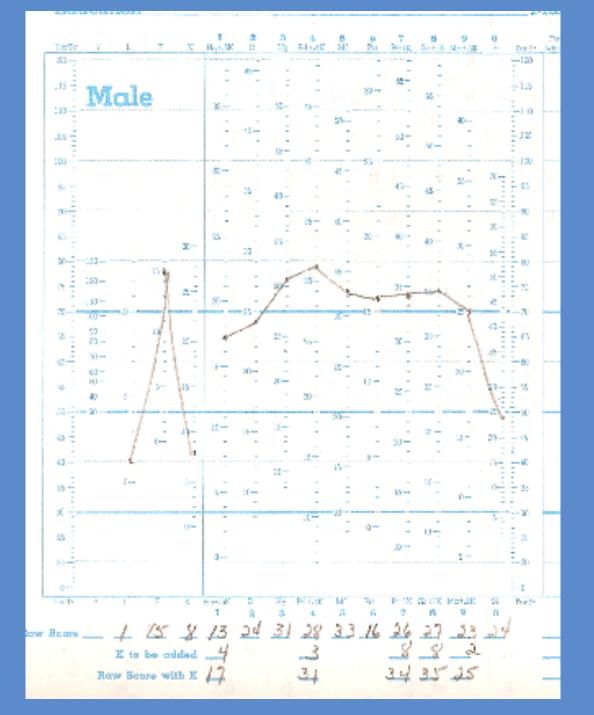
Starke R. Hathaway and J. Charnley McKinley

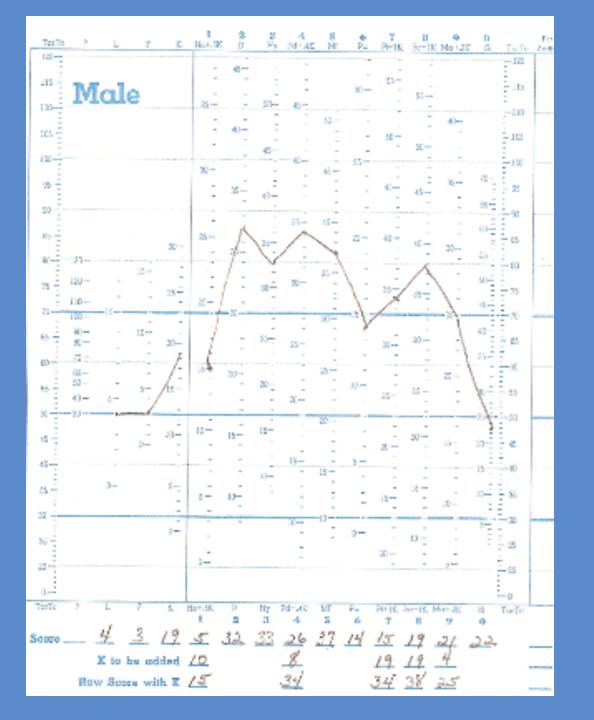
....Referred by

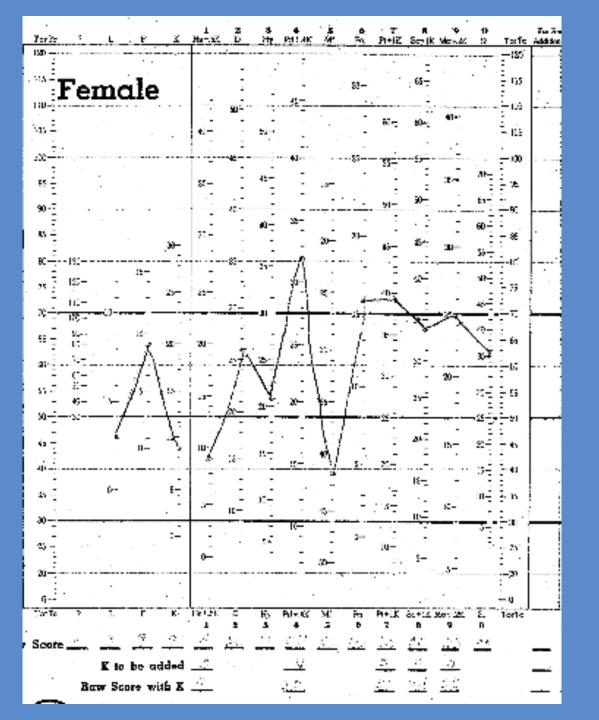
					1	2	. 3	4	5	6	7	2	9	n			-
76076	?	L	2	10.	He4.55	ő	Hy	POLAK	M	Fo.	3. UK		Mat SE	29	Jon Te	For Recording Additional Scales	
120-					1	-			100			24 - 114			-120	74.50 M.S. (00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00	Education
					-	45-						-			- 100	1	
116					-		-				55-	-			- 135		NA 11 1 61 1
115 ÷	TA/E	alc	~				-	-		30		55-			- 000		Marital Stat
l :	TAT	$a_{\rm D}$	e		35	-	30-	45-			-	25			:		
110-							-	٠.	-		-				- :0		NOTES
						4-	-	-	31-	-		-	45-				
105 =							_	-		-	50 m	-			- 100		
1 3					-		45-		-	-	-	20 —	-		-		
120					-			45-		25 -					100		
					30-		-		45-		- :						
95 -								-			45-		25		- 85		
-						85-	41-		-	-	-	48	-				
90									-					30-	20		Zerolani of Z
						-	-	35	40	_		-	-				8 : 5 : 1 2
35 -						-	-		-		41-4	-	-				50 15 12 5
90				20-	25-	-	35-		-	20 -	41-	60 -	9.5	- 5	- (15)		Sa IS I2 S
200	1700			-		30-	-	-	-	-				357 T			38 14 23 5
80 -	130		15-		-	-	-		-	-	-	-			- 50		37 14 C. 3
	120 -	-		-	-	-		20-			-			50		1 : 1	28 10 10 7
75 -				25-	-		25	-	-		26 -	35	-	-	- 75	1 1	
	110 -	-	-	-	83	-					-		-	45		1 1	85 (0 (0 5
77	100-	-10				-25			37 -	m-15		-	-25		- 771		S1 12 10 5 20 12 0 5
-	90-			-		-	-	-		-			-	0.0			S1 12 19 5 30 12 9 5 20 11 9 5
25 🚊	80 -	-	10-	20 -			25-	25			25-	301-		10-	66	l 1	21 3 8 4
		-	-					20-			27-	-	-				
au-	25-			-		-	-					-		35-	-60		50 (3) 0 4
1 :	60				15-	20	-		25-	-		-	22.7	- :		l I	15 10 3 4
55 =	52		-	15 -		-	20-		-	10 -	-	25 -		$m = \frac{1}{2}$	- 55	!	18 5 7 4
	43	g =	-		-	-	-	201 -	_	-	25=				- "		16 8 7 8
30000	- 21													20.0			
						-	-		20-		:		_:-		- 55		(5) () (1
45 -				11-	11 -	15	15-		-	-		20					14 7 5 3
45		_	0-	-	-					-	20 -	-	.s-	2	- 65		13 7 2 3
				-			-	15-	-	6	-	-	-	- : :		i 1	12 6 5 2 11 6 4 2
40-					-	-	20-		15					15-1	- 10		11 1 1 1
		2		5-	_	_	.0-		-	-		15		- : :		: 1	
25 =				٠.	5-	12	-	_	=	-	15 ~	15	-	л <u>-</u> -	- 35		12 2 4 2
				-				-	-	-	-	-	10 -	- :			
85					-			:0-	-11						- 30		. 기사하다
-				9-		-			-	\mathbf{p}	-		-	,-			5 3 2 :
25 =											-	$10 \pm$	-	= :	- 35		
-				ı	-			-			10		-	-	25		5 2 2 I
20 -				I	2-								5		- 30		1 2 2
																	2 : 15
6-															-0		0.000
Cart -		_	0	-	1 22	- 15	F5.	B.L. W	117	-	No. of the		V 1 2 2		-	i	0 1 2 2
forte	7		P	К :	derysk 1	D	Hy 3	PULAK	MI 2	Pa	Photos:	3;-1X F	CO + 25	34	TerTe		

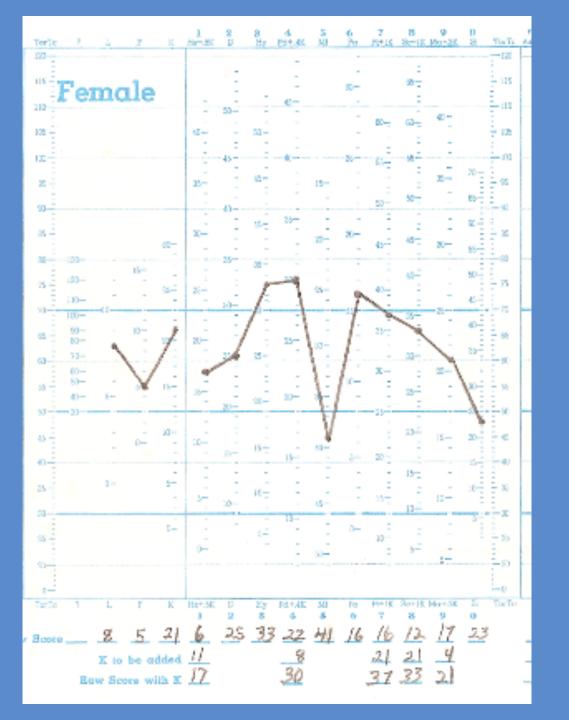
Copyright 1948 by The Psychological Corporation All rights reserved as stated in the manual and Catalog. The Psychological Corporation, New York, N.Y.

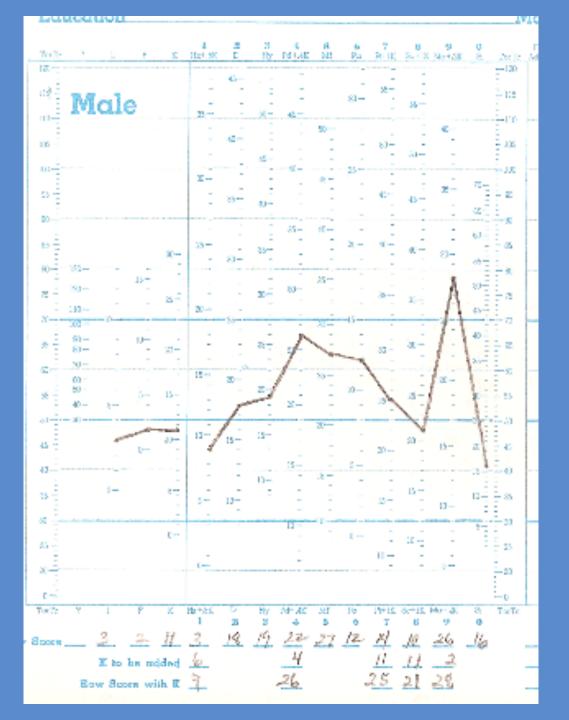
Signature

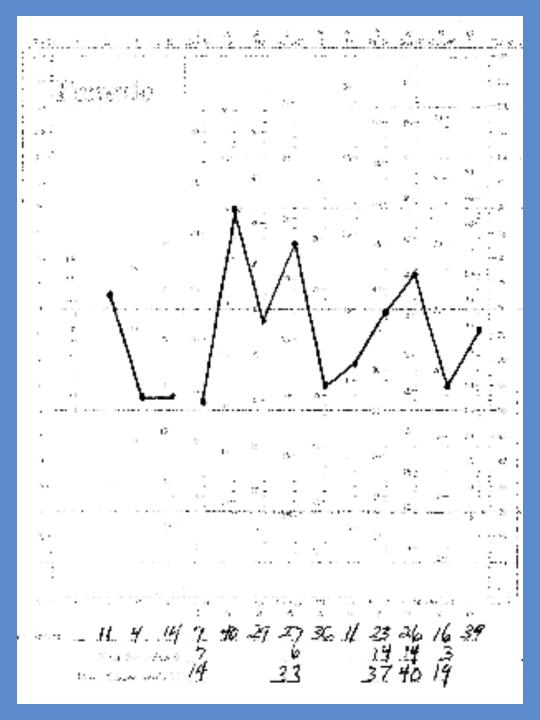

Date

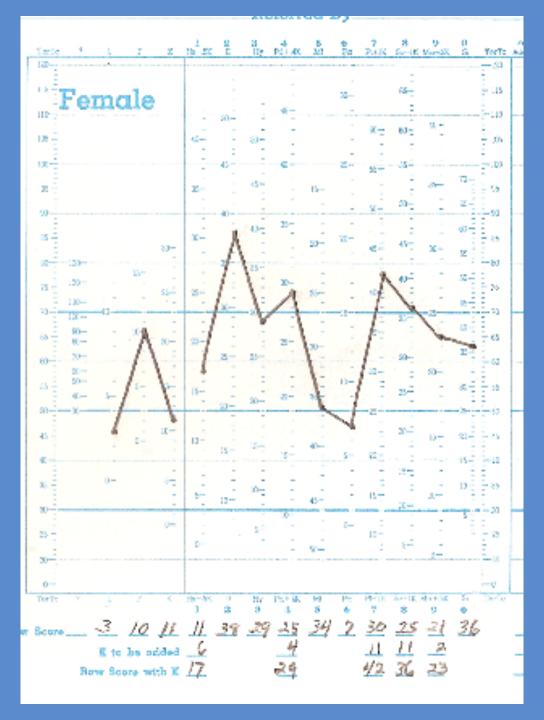

Education		Marital Status												Referred by							
ele Y L 7		B 4 By Misch	5 6 N 30	7 F			Zu Second						1					B IK Sold	,	0	For
7 1	Z 16.63K B	Hy Ritoria	N A	PHK 881	X Me4.36	5, Tot 7	Abaca S		120	Ta 1		1 2	He-SC	D	12 PHA	5 6	la Pr	H. Bort	E Horse	4 Tarte	Asia
Male			87-	&- u		- Fig	-		108	÷.	ma	10		-			x-	Z-		100	
Picte	x-	S- 0-	50		-			2 3 1	pl.5 112	Le	and	ie		50-	e-				-		
5		0 0	1	21-		- 12 DE		16 (5 (6	6 105	-			40-		0-			- 6-	**	- 106	
0=	80-	44-						28 15 15 28 14 13 17 14 11	5 an	Ė				-6			2	35-			
	35-			e- 45	8-	VI #		W 12 10					- 25-	- 3 -	ef i	38-			89-	5-5	
						-65-j-pa		25 D B						45				50		75-1-50	
4	25-	x- "	1 44	40- 40		0-1-8		53 12 8 52 10 8	- E			2.5	80-		E	1	s)	1 4		60-	
	. 20-					25-1-02		21 11 1	4 50	inc.		Z-		80		- :	- 4		25	5 - <u>-</u> x	
- 12,-	s5-	23 X	A :	35 a		50		20 0 9		180-		50 E	25-		j 80-	95	41	- q=		20-2	
- 100	- 10-	- A	()		-1	6	-	- 2 3 3	4 n	105-	1.0		-	30-	2		-19	:	25	40-1 -X	_
E # - E E	1	fs \ /	1	10-10	//	4-1		20 0 3		(B)		12 - 01	3		-	-	_ 25	+ 1		0112	
- B	1 1 1	/ · V			6	2		2 2 3		- 72			-	z- 1	25-	8)-	-:	- x-		25-1-m	1
1 m 1 m	1 N	8-	7 (0-	25 55	57-	10-1-x		3 6 3	2 10			s- 15-	1			-	H- H	1 .	ž-	x = 2	
		-	0	-				31 5 1	- 38-	-0-				E- 5	3- 20-	85-	25			-20	
V	II- In- E-	The same		2 - 80	15-	20-0		9 3 4	5 45			- 0-	18-	1	3 1 7			p=	15-	x 6	
		B-	15-			15		0 4 3 7 4 8 6 8 2	40-					15-	3-	40-	5- Z			1	
	5- 5- 30-			18-		0-1-25		1 2	55		3=				Der .	-		8		0-1-8	
همجمعة		7-	43			-20		4 2 2	11				5	13-	1 -	e-	- 15	20-	33-		
	1-	.6)-	n- 13-	-	- 4		2 2 2 2 1 1 1 1 1 6 C 0	6 25			0-	1		+ "		3- 13	1 1			
	<u></u>					a		् ।	20-				1 1-			9-		: 1	-		
į.						-1			6											-0	
T: 7 L 2	E 10.03K D	By Retail	96° Pa 5 &	7 8		0.000			Per	3 1	-	P K	1001.50	2	5 ALOR 3 4	e VI G	6 17	8	9	2 1856 0	-
	23 8 19	29 14	34 12	8 5 23 23 31 29	2.]	//2		_	Raw Soc	er			_						_	_	
K to be ad		9		23 23 31 29	26			-				e added						_			_
Bow Boore wit	K / 18	23		21 41	26		-			0	aw Scou	will. E	-				-	-	10000		_
gnature						corec's l		© 1988 b								Dote					

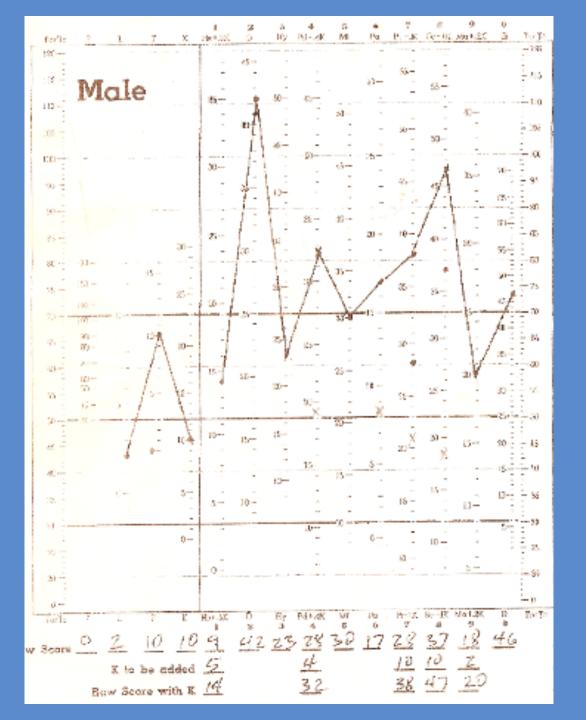

Copyright 1946. Copyright (© 1988 by The Psychological Copposition.


All rights measured as stoned in the Neurosi and Catalog.

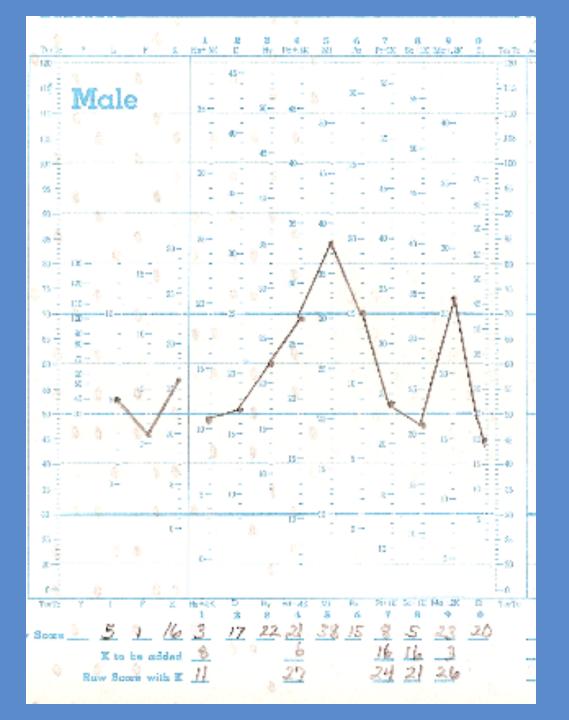

THE PSYCHOLOGICAL OCCUPARATION, 304 East 65th Street, How York, N. Y. 18817





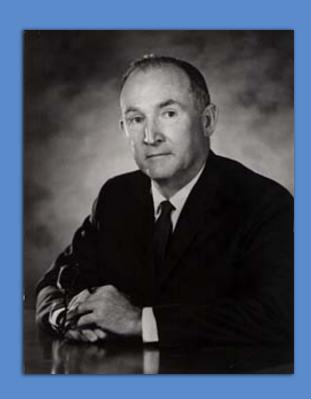






Chapter 11 Review

Humanistic Perspective


- Fromm loneliness; needs; character orientations
- Rogers –phenomenal field; discrepancies and incongruencies; anxiety; unconditional positive regard;

Trait Theory

Cattell – psychological testing; MMPI

Social-Cognitive Approach-George Kelly

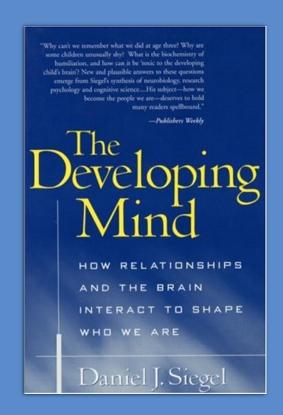
- Personal Construct Theory Each person creates a set of
 unique cognitive constructs
 about environment. Prediction.
- Construct Alternativism We are free to revise or replace
 constructs with other alternatives.
 Adaptability.
- Processes Ways we anticipate events. Future oriented for control; consequences.

Social-Cognitive Approach-George Kelly

- Cognitive Complexity –
 Ability to discriminate, see variety among people
- Cognitive Simplicity-Less discrimination
- Fixed Role Therapy —
 Client first plays a role, then lives it

Film – Social Cognition Model

- Basic idea behavior is influenced by interaction between individual and situations
- Beliefs, thoughts, cognitive activity important - cancer;
 Simonton studies


- Latent learning without reinforcement
- Observational learning pioneered research
- Violence on TV

- Terms
 - Vicarious reinforcement
 - Disinhibition -
 - weakening of a restraint thru exposure to a model – ex. mobs
 - Self-reinforcement -
 - can be tangible or emotional

- Self-efficacy -
 - learned expectations regarding one's success in performance of certain behavior
- Reciprocal determinism -
 - interaction between individuals and E
- Triadic reciprocity
 - behavior, cognition, and E variables are reciprocal determinants of each other

Biological & Evolutionary Approaches - Daniel J. Siegel

- Nature vs. nurture-
 - Genetic components in temperament
- State of mind-
 - Repeated patterns of activity in brain become engrained
- Self-states-
 - Multiple selves
- Authentic self-states

Exploring the Self

- Self-esteem
- Self-serving bias
- Individualist vs.
 collectivist
 cultures

Chapter 11 Review

Social-Cognitive Perspective

- Kelley personal construct theory; cognitive complexity / simplicity; fixed role therapy
- Bandura interaction between individual and situations; disinhibition; self-efficacy; reciprocal determinism

Chapter 11 Review

Biological Perspective

Siegel – states of mind;
 authentic self--states; reality

Self

 Self-esteem; self-serving bias; individualist/ collectivist culture