Tutorial letter 201/2/2013

MANAGEMENT ACCOUNTING TECHNIQUES AS AID IN DECISION-MAKING

SEMESTER 2

Department of Management Accounting

IMPORTANT INFORMATION:

This tutorial letter contains important information about your module.

Dear Student

Enclosed please find the solution in respect of compulsory assignment 01/2013. It is in your own interest to work through the suggested solution in conjunction with the assignment and your own answer.

Kind regards

	Telephone number	Office number	E-mail
Mrs S Klopper	012 429 8526	1 – 40	
Mrs A Raath	012 429 4490	1 – 39	ACN306Y-13-S2@unisa.ac.za
Mrs P R Berry	012 429 4414	1 – 37	BAR CODE

ELECTRA WHOLESALERS

Break-even selling price:

Let the selling price per unit = x

Break-even point = $\frac{\text{Fixed costs}}{\text{Marginal income per unit}}$

 $= \frac{R160\,000}{\chi - R10} \times \frac{100}{1}$

 $R160\ 000 = 20\ 000\ (x-R10)$

 $R160\ 000 = 20\ 000x - R200\ 000$

 $R160\ 000 + R200\ 000 = 20\ 000x$

 $x = R360\ 000 \div 20\ 000$

= R18

The break-even selling price would be R18.

or

Sales = Fixed costs + Variable costs + Profit

 $20\ 000x = R10\ (20\ 000) + R160\ 000 + 0$

 $20\ 000x = R360\ 000$

 $x = R360\ 000 \div 20\ 000$

x = R18

Option (2) is therefore correct.

QUESTION 2

LESATH CC

Conversion costs:

 R

 Direct labour
 60 000

 Variable overheads
 20 500

 Fixed overheads
 210 000

 290 500

Option (3) is therefore correct.

MERGA CC

Evaluation of statements:

No of units produced	Doubling	Total time (Hours)	Cumulative average time per unit (Hours)
1	-	1 600,00	1 600,00
2	1	2 880,00	1 440,00
4	2	5 184,00	1 296,00 ①
8	3	9 331,20	1 166,40
16	4	16 796,16	1 049,76

① 5 184 ÷ 4 = 1 296

Statements 1, 2 and 4 are true.

Option (3) is therefore correct.

QUESTION 4

OKUL LTD

Let the total time for unit 1 = x

Learning rate	=	Cumulative average time per unit		
Learning rate		Previous cumulative average time per unit		
0,90	=	$\frac{(x+16000) \div 2}{x}$		
0,9x	=	<u>x +16 000</u> 2		
1,8x	=	16 000 + x		
0,8x	=	16 000		
Χ	=	20 000		

Cumulative average time for the 16th unit:

Cumulative number of units	Total cumulative time	Cumulative average time per unit		
	(minutes)	(minutes)		
1	20 000	20 000		
2	36 000	18 000		
4	64 800	16 200		
8	116 640	14 580		
16	209 952	13 122		

Alternatively: 0,90³ x 20 000 = 13 122

Option (4) is therefore correct.

KASTRA (PTY) LTD

Overhead recovery rate: $\frac{R300\ 000}{75\ 000}$ = R4

Applied overheads (68 000 x R4) 272 000
Actual manufacturing overheads 290 000
Under-recovery 18 000

Option (4) is therefore correct.

POLARIS ENTERPRISES

QUESTION 6

Marginal income per machine hour - Deluxe model:

Marginal income = Selling price - variable costs

= R400 - R(150 + 80 + 15 + 5)

= R150

Number of machine hours required to manufacture one unit = 45/60 = 0,75

Marginal income per machine hour = $R150 \div 0.75$ = R200

Option (5) is therefore correct.

QUESTION 7

Marginal income per machine hour - Standard model:

Marginal income = Selling price - variable costs

= R300 - R(135 + 50 + 10 + 5)

= R100

Ranking of products:

Product Marginal income per		Labour hours			Machine hours		
	unit R	Hours per unit	Marginal income per hour	Ranking	Hours per unit	Marginal income per hour	Ranking
			R			R	
Standard	100	5	20	1	30/60	200	1
Deluxe	150	8	18,75	2	45/60	200	1

QUESTION 7 (continued)

Evaluation of options:

Option (1) is true.

Option (2) is false as the standard model ranks first in terms of labour hours.

Option (3) is false as the standard model ranks equally in terms of machine hours and first in terms of labour hours.

Option (4) is false for the same reason as (3).

Option (1) is therefore correct.

QUESTION 8

The equation in option (3) represents the correct one.

QUESTION 9

Budgeted fixed manufacturing overheads

	Standard model	Deluxe model	
Number of machine hours required in order to manufacture one unit	<u>30</u> 60	<u>45</u> 60	
Budgeted fixed manufacturing overheads per unit	R14	R21	
Budgeted fixed manufacturing overheads per machine hour	R28	R28	
Total number of machine hours available	12 500 hours		
Total budgeted fixed manufacturing overheads (12 500 x R28)	R35	50 000	

Option (2) is therefore correct.

FURUD (PTY) LIMITED

Required selling price:

Let the required selling price = x

```
Sales = Fixed costs + Variable costs + Profit

40\ 000x = [40\ 000\ x\ R(2+1+0.60) + 10\%x] + R60\ 000 + (R2.82\ x\ 40\ 000)

36\ 000\ x = R316\ 800

x = R8.80
```

The required selling price would have to be set at R8,80 per unit.

Option (4) is therefore correct.

TEGMAN LIMITED

QUESTION 11

Substitute b = 0,6004 in the following equation:

```
Σy
                     na + bΣx
                =
1 324
               =
                     7a + 1 980b
                     7a + 1 980 (0,6004)
1 324
                =
1 324
                     7a + 1 188,792
               =
7a
                     1 324 - 1 188,792
7a
               =
                     135,208
                     19,3154
а
```

The correct answer is therefore option (4).

QUESTION 12

```
y = average daily maintenance cost
y = a + bx
y = 19,3154 + 0,6004 (250)
y = 19,3154 +150,1
= 169,42
```

The correct answer is therefore option (1).

©UNISA 2013